Ridong Zhang received the Ph.D. degree in control science and engineering from Zhejiang University, Hangzhou, China, in 2007. From 2012 to 2016, he was a Visiting Professor with the Chemical and Biomolecular Engineering Department, The Hong Kong University of Science and Technology, Hong Kong. He is currently a Professor with the Institute of Information and Control, Hangzhou Dianzi University, Hangzhou. His current research interests include modeling and control for chemical nonlinear systems and HEV.
Télécharger le livre :  Application of Artificial Intelligence in Hybrid Electric Vehicle Energy Management

Application of Artificial Intelligence in Hybrid Electric Vehicle Energy Management presents the state-of-the-art in hybrid electric vehicle system modelling and management. With a focus on learning-based energy management strategies, the book provides detailed methods,...
Editeur : Elsevier
Parution : 2024-05-23

Format(s) : PDF, epub sans DRM
163,52

Téléchargement immédiat
Dès validation de votre commande
Télécharger le livre :  DNA Computing Based Genetic Algorithm

This book focuses on the implementation, evaluation and application of DNA/RNA-based genetic algorithms in connection with neural network modeling, fuzzy control, the Q-learning algorithm and CNN deep learning classifier. It presents several DNA/RNA-based genetic...
Editeur : Springer
Parution : 2020-07-01

Format(s) : PDF, ePub
147,69

Téléchargement immédiat
Dès validation de votre commande
Télécharger le livre :  Iterative Learning Stabilization and Fault-Tolerant Control for Batch Processes

This book is based on the authors’ research on the stabilization and fault-tolerant control of batch processes, which are flourishing topics in the field of control system engineering. It introduces iterative learning control for linear/nonlinear single/multi-phase...
Editeur : Springer
Parution : 2019-03-18

Format(s) : PDF, ePub
94,94

Téléchargement immédiat
Dès validation de votre commande
Télécharger le livre :  Model Predictive Control

This monograph introduces the authors’ work on model predictive control system design using extended state space and extended non-minimal state space approaches. It systematically describes model predictive control design for chemical processes, including the basic...
Editeur : Springer
Parution : 2018-08-14

Format(s) : PDF, ePub
94,94

Téléchargement immédiat
Dès validation de votre commande