The Definitive Guide to Machine Learning Operations in AWS

Machine Learning Scalability and Optimization with AWS

de

,

Éditeur :

Apress


Paru le : 2025-01-03



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
62,11

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Foreword by Dr. Shreyas Subramanian, Principal Data Scientist, Amazon
 
This book focuses on deploying, testing, monitoring, and automating ML systems in production. It covers AWS MLOps tools like Amazon SageMaker, Data Wrangler, and AWS Feature Store, along with best practices for operating ML systems on AWS.
 
This book explains how to design, develop, and deploy ML workloads at scale using AWS cloud's well-architected pillars. It starts with an introduction to AWS services and MLOps tools, setting up the MLOps environment. It covers operational excellence, including CI/CD pipelines and Infrastructure as code. Security in MLOps, data privacy, IAM, and reliability with automated testing are discussed. Performance efficiency and cost optimization, like Right-sizing ML resources, are explored. The book concludes with MLOps best practices, MLOPS for GenAI, emerging trends, and future developments in MLOps
 
By the end, readers will learn operating ML workloads on the AWS cloud. This book suits software developers, ML engineers, DevOps engineers, architects, and team leaders aspiring to be MLOps professionals on AWS.
 
What you will learn:
? Create repeatable training workflows to accelerate model development
? Catalog ML artifacts centrally for model reproducibility and governance
? Integrate ML workflows with CI/CD pipelines for faster time to production
? Continuously monitor data and models in production to maintain quality
? Optimize model deployment for performance and cost
 
Who this book is for:
This book suits ML engineers, DevOps engineers, software developers, architects, and team leaders aspiring to be MLOps professionals on AWS.
 
 
Pages
440 pages
Collection
n.c
Parution
2025-01-03
Marque
Apress
EAN papier
9798868810756
EAN PDF
9798868810763

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
44
Taille du fichier
16415 Ko
Prix
62,11 €
EAN EPUB
9798868810763

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
44
Taille du fichier
10107 Ko
Prix
62,11 €

Suggestions personnalisées