Machine Learning-based Prediction of Missing Parts for Assembly



de

Éditeur :

Springer Vieweg


Paru le : 2024-06-18



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
105,49

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Manufacturing companies face challenges in managing increasing process complexity while meeting demands for on-time delivery, particularly evident during critical processes like assembly. The early identification of potential missing parts at the beginning assembly emerges as a crucial strategy to uphold delivery commitments. This book embarks on developing machine learning-based prediction models to tackle this challenge. Through a systemic literature review, deficiencies in current predictive methodologies are highlighted, notably the underutilization of material data and a late prediction capability within the procurement process. Through case studies within the machine industry a significant influence of material data on the quality of models predicting missing parts from in-house production was verified. Further, a model for predicting delivery delays in the purchasing process was implemented, which makes it possible to predict potential missing parts from suppliers at the time of ordering. These advancements serve as indispensable tools for production planners and procurement professionals, empowering them to proactively address material availability challenges for assembly operations.
Pages
155 pages
Collection
n.c
Parution
2024-06-18
Marque
Springer Vieweg
EAN papier
9783658450328
EAN PDF
9783658450335

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
15
Taille du fichier
1690 Ko
Prix
105,49 €
EAN EPUB
9783658450335

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
15
Taille du fichier
8376 Ko
Prix
105,49 €

Fabian Steinberg studied production technology at the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen with a Master's degree. In his subsequent doctorate at the Chair of International Production Engineering and Management (IPEM) at the University of Siegen, he focussed on the prediction of missing parts for assembly using artificial intelligence.

Suggestions personnalisées