Real-time Speech and Music Classification by Large Audio Feature Space Extraction



de

Éditeur :

Springer


Collection :

Springer Theses

Paru le : 2015-12-24



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
147,69

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book reports on an outstanding thesis that has significantly advanced the state-of-the-art in the automated analysis and classification of speech and music.  It defines several standard acoustic parameter sets and describes their implementation in a novel, open-source, audio analysis framework called openSMILE, which has been accepted and intensively used worldwide. The book offers extensive descriptions of key methods for the automatic classification of speech and music signals in real-life conditions and reports on the evaluation of the framework developed and the acoustic parameter sets that were selected. It is not only intended as a manual for openSMILE users, but also and primarily as a guide and source of inspiration for students and scientists involved in the design of speech and music analysis methods that can robustly handle real-life conditions.

Pages
298 pages
Collection
Springer Theses
Parution
2015-12-24
Marque
Springer
EAN papier
9783319272986
EAN PDF
9783319272993

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
29
Taille du fichier
7127 Ko
Prix
147,69 €
EAN EPUB
9783319272993

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
29
Taille du fichier
3748 Ko
Prix
147,69 €