The Natural Anti-Gal Antibody as Foe Turned Friend in Medicine



de

Éditeur :

Academic Press


Paru le : 2017-09-05



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈 ebook sans DRM
Lecture en ligne (streaming)
75,91

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
The Natural Anti-Gal Antibody as Foe Turned Friend in Medicine provides a comprehensive review of the natural anti-Gal antibody, which is the most abundant antibody in humans constituting ~1% of immunoglobulins and the carbohydrate antigen it recognizes, the a-gal epitope. It discusses the discovery of this antigen/antibody system, its evolution in mammals, the pathological effects of this antibody, and its possible use in various therapies in humans. Most significantly, the book discusses microbial and regenerative therapies in which an antibody present in all humans may be harnessed as an in vivo pharmaceutical agent that enables a wide variety of therapies. Some of these therapies are described as experimental studies that are compiled in this book, other already studied therapies in the area of cancer immunotherapy are also included in this book. - Provides tactics on how to improve cancer immunotherapy and viral vaccine immunogenicity - Includes discussions on therapies that accelerate the healing of normal and chronic wounds, and of burns - Covers the regeneration of bio-implants
Pages
304 pages
Collection
n.c
Parution
2017-09-05
Marque
Academic Press
EAN papier
9780128133620
EAN PDF
9780128133637

Informations sur l'ebook
Nombre pages copiables
30
Nombre pages imprimables
30
Taille du fichier
14930 Ko
Prix
75,91 €
EAN EPUB SANS DRM
9780128133637

Prix
75,91 €

Uri Galili is an immunologist who received his PhD in 1977 at the Hebrew University School of Medicine, Jerusalem, Israel. Following postdoctoral research at the Karolinska Institute, Stockholm (1977-1979), he worked at Hadassah University Hospital, Jerusalem (1979-1984), where he discovered anti-Gal as the most abundant natural antibody in humans. In collaboration with Bruce Macher at University of California Medical Center, San Francisco (1984-1990), he identified the a-gal epitope as the mammalian antigen that binds anti-Gal, determined the unique evolution of anti-Gal and a-gal epitopes in primates and studied the molecular basis for this evolution. In MCP-Hahnemann School of Medicine, Philadelphia (1991-1999), he studied the significance of anti-Gal/a-gal epitope interaction as an immune barrier in xenotransplantation and initiated studies on harnessing anti-Gal in cancer immunotherapy and in amplifying immune response to viruses. At Rush Medical School, Chicago (1999-2004), he studied immune tolerance induction to a-gal epitopes. In the Department of Surgery at UMass Medical School, Worcester (2004-2013), he developed a method for in situ conversion of tumors into autologous vaccines targeted to antigen-presenting cells by intratumoral injection of a-gal glycolipids, performed clinical trials with this immunotherapy and demonstrated increased immunogenicity of influenza and HIV vaccines presenting a-gal epitopes. He further developed anti-Gal binding a-gal nanoparticles that accelerate wound and burn healing and induce tissue regeneration in internal injuries. Prof. Galili retired in 2013 and lives in Chicago. He continues his research as a volunteer Adjunct Professor at Rush Medical School, on a-gal nanoparticles induced regeneration of ischemic myocardium, post myocardial infarction.

Suggestions personnalisées