Proactive Data Mining with Decision Trees

de

, , ,

Éditeur :

Springer


Collection :

SpringerBriefs in Electrical and Computer Engineering

Paru le : 2014-02-14

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book explores a proactive and domain-driven method to classification tasks. This novel proactive approach to data mining not only induces a model for predicting or explaining a phenomenon, but also utilizes specific problem/domain knowledge to suggest specific actions to achieve optimal changes in the value of the target attribute. In particular, the authors suggest a specific implementation of the domain-driven proactive approach for classification trees. The book centers on the core idea of moving observations from one branch of the tree to another. It introduces a novel splitting criterion for decision trees, termed maximal-utility, which maximizes the potential for enhancing profitability in the output tree. Two real-world case studies, one of a leading wireless operator and the other of a major security company, are also included and demonstrate how applying the proactive approach to classification tasks can solve business problems. Proactive Data Mining with Decision Trees is intended for researchers, practitioners and advanced-level students.
Pages
88 pages
Collection
SpringerBriefs in Electrical and Computer Engineering
Parution
2014-02-14
Marque
Springer
EAN papier
9781493905386
EAN EPUB
9781493905393

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
8
Taille du fichier
1495 Ko
Prix
52,74 €