Variational Regularization of 3D Data

Experiments with MATLAB® de

,

Éditeur :

Springer


Collection :

SpringerBriefs in Computer Science

Paru le : 2014-03-14

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Variational Regularization of 3D Data provides an introduction to variational methods for data modelling and its application in computer vision. In this book, the authors identify interpolation as an inverse problem that can be solved by Tikhonov regularization. The proposed solutions are generalizations of one-dimensional splines, applicable to n-dimensional data and the central idea is that these splines can be obtained by regularization theory using a trade-off between the fidelity of the data and smoothness properties.
As a foundation, the authors present a comprehensive guide to the necessary fundamentals of functional analysis and variational calculus, as well as splines. The implementation and numerical experiments are illustrated using MATLAB®. The book also includes the necessary theoretical background for approximation methods and some details of the computer implementation of the algorithms. A working knowledge of multivariable calculus and basic vector and matrix methods should serve as an adequate prerequisite.
Pages
85 pages
Collection
SpringerBriefs in Computer Science
Parution
2014-03-14
Marque
Springer
EAN papier
9781493905324
EAN EPUB
9781493905331

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
8
Taille du fichier
1884 Ko
Prix
52,74 €