Machine Learning with PySpark

With Natural Language Processing and Recommender Systems

de

Éditeur :

Apress


Paru le : 2018-12-14



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
34,50

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description





Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark. 


Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification. 


After reading thisbook, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.

What You Will Learn
Build a spectrum of supervised and unsupervised machine learning algorithms
Implement machine learning algorithms with Spark MLlib libraries
Develop a recommender system with Spark MLlib libraries
Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model


Who This Book Is For 


Data science and machine learning professionals. 



Pages
223 pages
Collection
n.c
Parution
2018-12-14
Marque
Apress
EAN papier
9781484241301
EAN PDF
9781484241318

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
22
Taille du fichier
7270 Ko
Prix
34,50 €
EAN EPUB
9781484241318

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
22
Taille du fichier
8571 Ko
Prix
34,50 €

Suggestions personnalisées