Machine Learning Using R

With Time Series and Industry-Based Use Cases in R

de

,

Éditeur :

Apress


Paru le : 2018-12-12



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
66,05

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R.
As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning.What You'll Learn 

Understand machine learning algorithms using R
Master the process of building machine-learning models 
Cover the theoretical foundations of machine-learning algorithms
See industry focused real-world use cases
Tackle time series modeling in R
Apply deep learning using Keras and TensorFlow in R


Who This Book is For
Data scientists, data science professionals, and researchers in academia who want to understand the nuances of machine-learning approaches/algorithms in practice using R.
Pages
700 pages
Collection
n.c
Parution
2018-12-12
Marque
Apress
EAN papier
9781484242148
EAN PDF
9781484242155

Informations sur l'ebook
Nombre pages copiables
7
Nombre pages imprimables
70
Taille du fichier
18340 Ko
Prix
66,05 €
EAN EPUB
9781484242155

Informations sur l'ebook
Nombre pages copiables
7
Nombre pages imprimables
70
Taille du fichier
15708 Ko
Prix
66,05 €

Suggestions personnalisées