Erdélyi–Kober Fractional Calculus

From a Statistical Perspective, Inspired by Solar Neutrino Physics de

,

Éditeur :

Springer


Collection :

SpringerBriefs in Mathematical Physics

Paru le : 2018-09-06

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book focuses on Erdélyi–Kober fractional calculus from a statistical perspective inspired by solar neutrino physics. Results of diffusion entropy analysis and standard deviation analysis of data from the Super-Kamiokande solar neutrino experiment lead to the development of anomalous diffusion and reaction in terms of fractional calculus. The new statistical perspective of Erdélyi–Kober fractional operators outlined in this book will have fundamental applications in the theory of anomalous reaction and diffusion processes dealt with in physics.A major mathematical objective of this book is specifically to examine a new de?nition for fractional integrals in terms of the distributions of products and ratios of statistically independently distributed positive scalar random variables or in terms of Mellin convolutions of products and ratios in the case of real scalar variables. The idea will be generalized to cover multivariable cases as well as matrix variable cases. In the matrix variable case, M-convolutions of products and ratios will be used to extend the ideas. We then give a de?nition for the case of real-valued scalar functions of several matrices.

Pages
122 pages
Collection
SpringerBriefs in Mathematical Physics
Parution
2018-09-06
Marque
Springer
EAN papier
9789811311581
EAN PDF
9789811311598

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
12
Taille du fichier
1976 Ko
Prix
52,74 €
EAN EPUB
9789811311598

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
12
Taille du fichier
9789 Ko
Prix
52,74 €