Pro Machine Learning Algorithms

A Hands-On Approach to Implementing Algorithms in Python and R

de

Éditeur :

Apress


Paru le : 2018-06-30



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
66,05

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R.


You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers.


You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. 


What You Will Learn
Get an in-depth understanding of all the major machine learning and deep learning algorithms 
Fully appreciate the pitfalls to avoid while building models
Implement machine learning algorithms in the cloud 
Follow a hands-on approach through case studies for each algorithmGain the tricks of ensemble learning to build more accurate modelsDiscover the basics of programming in R/Python and the Keras framework for deep learning
Who This Book Is For


Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.




Pages
372 pages
Collection
n.c
Parution
2018-06-30
Marque
Apress
EAN papier
9781484235638
EAN PDF
9781484235645

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
37
Taille du fichier
22825 Ko
Prix
66,05 €

Suggestions personnalisées