Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with Bio-Inspired Algorithms for Time Series Prediction

de

, ,

Éditeur :

Springer


Collection :

SpringerBriefs in Applied Sciences and Technology

Paru le : 2017-11-19

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book focuses on the fields of hybrid intelligent systems based on fuzzy systems, neural networks, bio-inspired algorithms and time series. This book describes the construction of ensembles of Interval Type-2 Fuzzy Neural Networks models and the optimization of their fuzzy integrators with bio-inspired algorithms for time series prediction. Interval type-2 and type-1 fuzzy systems are used to integrate the outputs of the Ensemble of Interval Type-2 Fuzzy Neural Network models. Genetic Algorithms and Particle Swarm Optimization are the Bio-Inspired algorithms used for the optimization of the fuzzy response integrators. The Mackey-Glass, Mexican Stock Exchange, Dow Jones and NASDAQ time series are used to test of performance of the proposed method. Prediction errors are evaluated by the following metrics: Mean Absolute Error, Mean Square Error, Root Mean Square Error, Mean Percentage Error and Mean Absolute Percentage Error. The proposed prediction model outperforms state of the art methods in predicting the particular time series considered in this work.
 
Pages
97 pages
Collection
SpringerBriefs in Applied Sciences and Technology
Parution
2017-11-19
Marque
Springer
EAN papier
9783319712635
EAN PDF
9783319712642

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
9
Taille du fichier
5796 Ko
Prix
52,74 €
EAN EPUB
9783319712642

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
9
Taille du fichier
3308 Ko
Prix
52,74 €