Solution Thermodynamics and Its Application to Aqueous Solutions

A Differential Approach

de

Éditeur :

Elsevier Science


Paru le : 2017-03-28



eBook Téléchargement ebook sans DRM
Lecture en ligne (streaming)
151,58

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Solution Thermodynamics and its Application to Aqueous Solutions: A Differential Approach, Second Edition introduces a differential approach to solution thermodynamics, applying it to the study of aqueous solutions. This valuable approach reveals the molecular processes in solutions in greater depth than that gained by spectroscopic and other methods. The book clarifies what a hydrophobe, or a hydrophile, and in turn, an amphiphile, does to H2O. By applying the same methodology to ions that have been ranked by the Hofmeister series, the author shows that the kosmotropes are either hydrophobes or hydration centers, and that chaotropes are hydrophiles. This unique approach and important updates make the new edition a must-have reference for those active in solution chemistry. - Unique differential approach to solution thermodynamics allows for experimental evaluation of the intermolecular interaction - Incorporates research findings from over 40 articles published since the previous edition - Numerical or graphical evaluation and direct experimental determination of third derivatives, enthalpic and volumetric AL-AL interactions and amphiphiles are new to this edition - Features new chapters on spectroscopic study in aqueous solutions as well as environmentally friendly and hostile water aqueous solutions
Pages
444 pages
Collection
n.c
Parution
2017-03-28
Marque
Elsevier Science
EAN papier
9780444636294
EAN EPUB SANS DRM
9780444636300

Prix
151,58 €

Dr. Koga's group introduced a new approach to the thermodynamic studies of aqueous solutions. They devised methods of measuring various thermodynamic quantities differentially. These methods allow them to experimentally evaluate the intermolecular interaction, the key quantity in the so-called "many-body problem. The group has started applying this new methodology to aqueous solutions of biopolymers. As a recognition of his contribution to solution thermodynamics, he was awarded the Society Award by The Japan Society of Calorimetry and Thermal Analysis in 2006. In 2011, he obtained for the first time in the world a fourth derivative of Gibbs energy and named it "Acceleration of the effect of solute on entropy-volume cross fluctuation density."

Suggestions personnalisées