From Global to Local Statistical Shape Priors

Novel Methods to Obtain Accurate Reconstruction Results with a Limited Amount of Training Shapes de

Éditeur :

Springer


Collection :

Studies in Systems, Decision and Control

Paru le : 2017-03-14

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
95,39

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.
Pages
259 pages
Collection
Studies in Systems, Decision and Control
Parution
2017-03-14
Marque
Springer
EAN papier
9783319535074
EAN PDF
9783319535081

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
25
Taille du fichier
13855 Ko
Prix
95,39 €
EAN EPUB
9783319535081

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
25
Taille du fichier
11622 Ko
Prix
95,39 €