Link Prediction in Social Networks

Role of Power Law Distribution de

,

Éditeur :

Springer


Collection :

SpringerBriefs in Computer Science

Paru le : 2016-01-22

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This work presents link prediction similarity measures for social networks that exploit the degree distribution of the networks. In the context of link prediction in dense networks, the text proposes similarity measures based on Markov inequality degree thresholding (MIDTs), which only consider nodes whose degree is above a threshold for a possible link. Also presented are similarity measures based on cliques (CNC, AAC, RAC), which assign extra weight between nodes sharing a greater number of cliques. Additionally, a locally adaptive (LA) similarity measure is proposed that assigns different weights to common nodes based on the degree distribution of the local neighborhood and the degree distribution of the network. In the context of link prediction in dense networks, the text introduces a novel two-phase framework that adds edges to the sparse graph to forma boost graph.
Pages
67 pages
Collection
SpringerBriefs in Computer Science
Parution
2016-01-22
Marque
Springer
EAN papier
9783319289212
EAN PDF
9783319289229

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
6
Taille du fichier
1188 Ko
Prix
52,74 €
EAN EPUB
9783319289229

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
6
Taille du fichier
737 Ko
Prix
52,74 €