The Kadison-Singer Property

de

Éditeur :

Springer


Collection :

SpringerBriefs in Mathematical Physics

Paru le : 2016-11-07

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description



This book gives a complete classification of all algebras with the Kadison-Singer property, when restricting to separable Hilbert spaces. The Kadison-Singer property deals with the following question: given a Hilbert space H and an abelian unital C*-subalgebra A of B(H), does every pure state on A extend uniquely to a pure state on B(H)? This question has deep connections to fundamental aspects of quantum physics, as is explained in the foreword by Klaas Landsman. 
The book starts with an accessible introduction to the concept of states and continues with a detailed proof of the classification of maximal Abelian von Neumann algebras, a very explicit construction of the Stone-Cech compactification and an account of the recent proof of the Kadison-Singer problem. At the end accessible appendices provide the necessary background material.


This elementary account of the Kadison-Singer conjecture is very well-suited for graduate students interested in operator algebras and states, researchers who are non-specialists of the field, and/or interested in fundamental quantum physics.
Pages
140 pages
Collection
SpringerBriefs in Mathematical Physics
Parution
2016-11-07
Marque
Springer
EAN papier
9783319477015
EAN PDF
9783319477022

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
14
Taille du fichier
1823 Ko
Prix
52,74 €
EAN EPUB
9783319477022

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
14
Taille du fichier
3779 Ko
Prix
52,74 €