Classical and Modern Integration Theories

de

Éditeur :

Academic Press


Paru le : 2014-07-03

eBook Téléchargement ebook sans DRM
Lecture en ligne (streaming)
57,97

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Classical and Modern Integration Theories discusses classical integration theory, particularly that part of the theory directly associated with the problems of area. The book reviews the history and the determination of primitive functions, beginning from Cauchy to Daniell. The text describes Cauchy's definition of an integral, Riemann's definition of the R-integral, the upper and lower Darboux integrals. The book also reviews the origin of the Lebesgue-Young integration theory, and Borel's postulates that define measures of sets. W.H. Young's work provides a construction of the integral equivalent to Lebesque's construction with a different generalization of integrals leading to different approaches in solutions. Young's investigations aim at generalizing the notion of length for arbitrary sets by means of a process which is more general than Borel's postulates. The text notes that the Lebesgue measure is the unique solution of the measure problem for the class of L-measurable sets. The book also describes further modifications made into the Lebesgue definition of the integral by Riesz, Pierpont, Denjoy, Borel, and Young. These modifications bring the Lebesgue definition of the integral closer to the Riemann or Darboux definitions, as well as to have it associated with the concepts of classical analysis. The book can benefit mathematicians, students, and professors in calculus or readers interested in the history of classical mathematics.
Pages
218 pages
Collection
n.c
Parution
2014-07-03
Marque
Academic Press
EAN papier
9780125525503
EAN PDF SANS DRM
9781483268699

Informations sur l'ebook
Prix
57,97 €

Suggestions personnalisées