Why AI/Data Science Projects Fail

How to Avoid Project Pitfalls

de

Éditeur :

Springer


Paru le : 2025-07-29



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
31,64

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This Second Edition addresses five common pitfalls that prevent projects from reaching deployment and provides tools and methods to avoid these pitfalls. Current statistics show that 87% of AI and Big Data projects fail by never reaching deployment, making this book an essential resource for data science and AI practitioners, as well as managers. The author illustrates the methods and tools by including real examples from her experience building and deploying data science and AI projects. This new edition builds upon the original book with revisions, updates and features a new chapter on Generative AI.
Pages
71 pages
Collection
n.c
Parution
2025-07-29
Marque
Springer
EAN papier
9783031908699
EAN PDF
9783031908705

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
2161 Ko
Prix
31,64 €
EAN EPUB
9783031908705

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
2161 Ko
Prix
31,64 €

Joyce Weiner is a Principal Engineer at Intel Corporation. Her area of technical expertise is data science and using data to drive efficiency. Joyce is a black belt in Lean Six Sigma. She has a B.S. in Physics from Rensselaer Polytechnic Institute and an M.S. in Optical Sciences from the University of Arizona. 

Suggestions personnalisées