Hands-on Pattern Mining

Theory and Examples with PAMI, Sklearn, Keras, and TensorFlow

de

Éditeur :

Springer


Paru le : 2025-07-10



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
63,29

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book introduces pattern mining by presenting various pattern mining techniques and giving hands-on experience with each technique. Pattern mining is a popular data mining technique with many real-world applications, and involves discovering all user interest-based patterns that may exist in a database. Several models and numerous algorithms were described in the literature to find these patterns in binary databases, quantitative databases, uncertain databases, and streams. Since the lack of a Python toolkit containing these algorithms has limited the wide adaptability of pattern-mining techniques, the author developed Pattern Mining (PAMI) Python library, which currently contains 80+ algorithms to discover useful patterns in transactional databases, temporal databases, quantitative databases, and graphs.
The book consists of three main parts:
· Introduction: The first chapter introduces big data, types of learning techniques, and the importance of pattern mining. The second chapter introduces the PAMI library, its organizational structure, installation, and usage.
· Pattern mining algorithms and examples: The following chapters present the state-of-the-art techniques for discovering user interest-based patterns in (1) transactional databases, (2) temporal databases, (3) quantitative databases, (4) uncertain databases, (5) sequential databases, and (6) graphs.
· Applications: The book concludes with several applications, where the predicted knowledge using TensorFlow and PyTorch was transformed into a database to discover future trends or patterns.
Pages
182 pages
Collection
n.c
Parution
2025-07-10
Marque
Springer
EAN papier
9789819667901
EAN PDF
9789819667918

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
18
Taille du fichier
17469 Ko
Prix
63,29 €
EAN EPUB
9789819667918

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
18
Taille du fichier
17715 Ko
Prix
63,29 €

Rage Uday Kiran is an associate professor in the Division of Information Systems at The University of Aizu, Japan.

Suggestions personnalisées