Machine Learning for Business Analytics

Concepts, Techniques, and Applications in Python de

, , ,

Éditeur :

Wiley


Paru le : 2025-05-28

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
137,78

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Machine Learning for Business Analytics: Concepts, Techniques, and Applications in Python is a comprehensive introduction to and an overview of the methods that underlie modern AI. This best-selling textbook covers both statistical and machine learning (AI) algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation, network analytics and generative AI. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.
This is the second Python edition of Machine Learning for Business Analytics. This edition also includes: A new chapter on generative AI (large language models or LLMs, and image generation)An expanded chapter on deep learningA new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learningA new chapter on responsible data scienceUpdates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their studentsA full chapter of cases demonstrating applications for the machine learning techniquesEnd-of-chapter exercises with dataA companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions
This textbook is an ideal resource for upper-level undergraduate and graduate level courses in AI, data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.
Pages
720 pages
Collection
n.c
Parution
2025-05-28
Marque
Wiley
EAN papier
9781394286799
EAN PDF
9781394286812

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
720
Taille du fichier
15964 Ko
Prix
137,78 €
EAN EPUB
9781394286805

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
720
Taille du fichier
12032 Ko
Prix
137,78 €

Suggestions personnalisées