Architectures and Circuits for Distributed Quantum Computing



de

Éditeur :

Springer


Paru le : 2025-01-13



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
168,79

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This thesis treats networks providing quantum computation based on distributed paradigms. Compared to architectures relying on one processor, a network promises to be more scalable and less fault-prone. Developing a distributed system able to provide practical quantum computation comes with numerous challenges, each of which need to be faced with careful analysis in order to create a seamless integration of multiple engineered components.
In accordance with hardware technologies, currently under development worldwide, telegates represent the fundamental inter-processor operations. Each telegate consists of several tasks: i) entanglement generation and distribution, ii) local operations, and iii) classical communications. Entanglement generation and distribution is an expensive resource, as it is time-consuming. The primary contribution of this thesis lies in the extensive analysis of some complex scenarios of general interest. We propose numerical models that help to identifythe interdependence between computation and communication. With the support of some of the best tools for reasoning -- i.e. network optimization, circuit manipulation, group theory and ZX-calculus -- we lay out new perspectives on the way a distributed quantum computing system should be developed.
Pages
76 pages
Collection
n.c
Parution
2025-01-13
Marque
Springer
EAN papier
9783031738074
EAN PDF
9783031738081

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
2468 Ko
Prix
168,79 €
EAN EPUB
9783031738081

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
9216 Ko
Prix
168,79 €

Currently a Postdoc Horizon Fellow at Universidad Politecnica de Valencia, Daniel Cuomo's primary work concerns the design of scalable systems for quantum computation. He collaborates closely with leading experts and institutions in the field. He holds a M.Sc. in Computer Science and a Ph.D. in Quantum Technologies, both achieved with the highest grade at the Università degli Studi di Napoli Federico II. With a track record of published articles addressing distributed systems design and optimisation, Daniel has four years of hands-on experience. He has worked as a visiting researcher at Universidad Carlos III de Madrid and served as a theory counselor at Nu Quantum in Cambridge.

Suggestions personnalisées