Numerical Python

Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib de

Éditeur :

Apress


Paru le : 2024-09-27

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
37,46

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.
Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. 
After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.
What You'll Learn Work with vectors and matrices using NumPy Review Symbolic computing with SymPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Understand statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython
Who This Book Is For
Developers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis. 
Pages
492 pages
Collection
n.c
Parution
2024-09-27
Marque
Apress
EAN papier
9798868804120
EAN PDF
9798868804137

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
49
Taille du fichier
29553 Ko
Prix
37,46 €
EAN EPUB
9798868804137

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
49
Taille du fichier
23450 Ko
Prix
37,46 €

Suggestions personnalisées