Mathematical Descriptors of Molecules and Biomolecules

Applications in Chemistry, Drug Design, Chemical Toxicology, and Computational Biology de

Éditeur :

Springer


Paru le : 2024-09-02

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
42,19

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book provides an up-to-date overview of data driven and evidence-based empirical approaches in the efficient application of chemodescriptors and biodescriptors. Currently there is a steady increase in the use of data analytics and model-based decision support systems in basic and applied research in chemoinformatics, bioinformatics, pharmaceutical drug design, predictive toxicology, and computational biology.  Since there are a plethora of modeling methods and a large number of chemodescriptors and biodescriptors available today, robust statistical and machine learning methods are applied throughout. In addition, the development of statistically robust predictive models in rank deficient cases using chemodescrip tors and biodescriptors is discussed. Readers are provided with an up-to-date overview of the theoretical background, calculation methods, and proper use of chemodescriptors and biodescriptors in model building, with special emphasis on computer-assisted organic synthesis, new drug discovery, hazard assessment of chemicals, and computational biology of emerging global pathogens. The book also discusses the applications of alignment-free sequence descriptors (AFSDs) in vaccine design and the characterization of emerging global pathogens such as the Zika virus and  SARS-CoV-2. The utility of molecular fragment-based descriptors in building useful quantitative structure-activity relationship (Q)SAR) models is detailed as is the use of mathematical structural descriptors in chemical synthesis planning.
Pages
168 pages
Collection
n.c
Parution
2024-09-02
Marque
Springer
EAN papier
9783031678400
EAN PDF
9783031678417

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
16
Taille du fichier
7639 Ko
Prix
42,19 €
EAN EPUB
9783031678417

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
16
Taille du fichier
17746 Ko
Prix
42,19 €

Suggestions personnalisées