Data-Driven Clinical Decision-Making Using Deep Learning in Imaging

de

,

Éditeur :

Springer


Paru le : 2024-08-13

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
179,34

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book explores cutting-edge medical imaging advancements and their applications in clinical decision-making. The book contains various topics, methodologies, and applications, providing readers with a comprehensive understanding of the field's current state and prospects. It begins with exploring domain adaptation in medical imaging and evaluating the effectiveness of transfer learning to overcome challenges associated with limited labeled data. The subsequent chapters delve into specific applications, such as improving kidney lesion classification in CT scans, elevating breast cancer research through attention-based U-Net architecture for segmentation and classifying brain MRI images for neurological disorders. Furthermore, the book addresses the development of multimodal machine learning models for brain tumor prognosis, the identification of unique dermatological signatures using deep transfer learning, and the utilization of generative adversarial networks to enhance breast cancer detection systems by augmenting mammogram images. Additionally, the authors present a privacy-preserving approach for breast cancer risk prediction using federated learning, ensuring the confidentiality and security of sensitive patient data. This book brings together a global network of experts from various corners of the world, reflecting the truly international nature of its research.
Pages
274 pages
Collection
n.c
Parution
2024-08-13
Marque
Springer
EAN papier
9789819739653
EAN PDF
9789819739660

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
27
Taille du fichier
15043 Ko
Prix
179,34 €
EAN EPUB
9789819739660

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
27
Taille du fichier
33393 Ko
Prix
179,34 €

Suggestions personnalisées