Automotive Security Analyzer for Exploitability Risks

An Automated and Attack Graph-Based Evaluation of On-Board Networks

de

Éditeur :

Springer Vieweg


Paru le : 2024-03-15



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
105,49

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Our lives depend on automotive cybersecurity, protecting us inside and near vehicles. If vehicles go rogue, they can operate against the driver’s will and potentially drive off a cliff or into a crowd. The “Automotive Security Analyzer for Exploitability Risks” (AutoSAlfER) evaluates the exploitability risks of automotive on-board networks by attack graphs. AutoSAlfER’s Multi-Path Attack Graph algorithm is 40 to 200 times smaller in RAM and 200 to 5 000 times faster than a comparable implementation using Bayesian networks, and the Single-Path Attack Graph algorithm constructs the most reasonable attack path per asset with a computational, asymptotic complexity of only O(n * log(n)), instead of O(n²). AutoSAlfER runs on a self-written graph database, heuristics, pruning, and homogenized Gaussian distributions and boosts people’s productivity for a more sustainable and secure automotive on-board network. Ultimately, we enjoy more safety and security in and around autonomous, connected, electrified, and shared vehicles.





Pages
243 pages
Collection
n.c
Parution
2024-03-15
Marque
Springer Vieweg
EAN papier
9783658435059
EAN PDF
9783658435066

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
24
Taille du fichier
4639 Ko
Prix
105,49 €
EAN EPUB
9783658435066

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
24
Taille du fichier
32092 Ko
Prix
105,49 €

Suggestions personnalisées