Computational Methods and Deep Learning for Ophthalmology



de

Éditeur :

Academic Press


Paru le : 2023-02-18



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈 ebook sans DRM
Lecture en ligne (streaming)
156,14

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Computational Methods and Deep Learning for Ophthalmology presents readers with the concepts and methods needed to design and use advanced computer-aided diagnosis systems for ophthalmologic abnormalities in the human eye. Chapters cover computational approaches for diagnosis and assessment of a variety of ophthalmologic abnormalities. Computational approaches include topics such as Deep Convolutional Neural Networks, Generative Adversarial Networks, Auto Encoders, Recurrent Neural Networks, and modified/hybrid Artificial Neural Networks. Ophthalmological abnormalities covered include Glaucoma, Diabetic Retinopathy, Macular Degeneration, Retinal Vein Occlusions, eye lesions, cataracts, and optical nerve disorders.
This handbook provides biomedical engineers, computer scientists, and multidisciplinary researchers with a significant resource for addressing the increase in the prevalence of diseases such as Diabetic Retinopathy, Glaucoma, and Macular Degeneration. Presents the latest computational methods for designing and using Decision-Support Systems for ophthalmologic disorders in the human eye Conveys the role of a variety of computational methods and algorithms for efficient and effective diagnosis of ophthalmologic disorders, including Diabetic Retinopathy, Glaucoma, Macular Degeneration, Retinal Vein Occlusions, eye lesions, cataracts, and optical nerve disorders Explains how to develop and apply a variety of computational diagnosis systems and technologies, including medical image processing algorithms, bioinspired optimization, Deep Learning, computational intelligence systems, fuzzy-based segmentation methods, transfer learning approaches, and hybrid Artificial Neural Networks

Elsevier Science & Technology
Pages
250 pages
Collection
n.c
Parution
2023-02-18
Marque
Academic Press
EAN papier
9780323954150
EAN PDF
9780323954143

Informations sur l'ebook
Nombre pages copiables
25
Nombre pages imprimables
25
Taille du fichier
8376 Ko
Prix
156,14 €
EAN EPUB SANS DRM
9780323954143

Prix
156,14 €

Suggestions personnalisées