Transparency and Interpretability for Learned Representations of Artificial Neural Networks



de

Éditeur :

Springer Vieweg


Paru le : 2022-11-26



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
84,39

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Artificial intelligence (AI) is a concept, whose meaning and perception has changed considerably over the last decades. Starting off with individual and purely theoretical research efforts in the 1950s, AI has grown into a fully developed research field of modern times and may arguably emerge as one of the most important technological advancements of mankind. Despite these rapid technological advancements, some key questions revolving around the matter of transparency, interpretability and explainability of an AI’s decision-making remain unanswered. Thus, a young research field coined with the general term Explainable AI (XAI) has emerged from increasingly strict requirements for AI to be used in safety critical or ethically sensitive domains. An important research branch of XAI is to develop methods that help to facilitate a deeper understanding for the learned knowledge of artificial neural systems. In this book, a series of scientific studies are presented that shed lighton how to adopt an empirical neuroscience inspired approach to investigate a neural network’s learned representation in the same spirit as neuroscientific studies of the brain.
Pages
211 pages
Collection
n.c
Parution
2022-11-26
Marque
Springer Vieweg
EAN papier
9783658400033
EAN PDF
9783658400040

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
21
Taille du fichier
5530 Ko
Prix
84,39 €
EAN EPUB
9783658400040

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
21
Taille du fichier
40458 Ko
Prix
84,39 €

Suggestions personnalisées