R 4 Data Science Quick Reference

A Pocket Guide to APIs, Libraries, and Packages

de

Éditeur :

Apress


Paru le : 2022-10-28



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
36,47

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

In this handy, quick reference book you'll be introduced to several R data science packages, with examples of how to use each of them. All concepts will be covered concisely, with many illustrative examples using the following APIs: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more.


With R 4 Data Science Quick Reference, you'll have the code, APIs, and insights to write data science-based applications in the R programming language. You'll also be able to carry out data analysis. All source code used in the book is freely available on GitHub..  


What You'll Learn
Implement applicable R 4 programming language specification featuresImport data with readrWork with categories using forcats, time and dates with lubridate, and strings with stringrFormat data using tidyr and then transform that data using magrittr and dplyrWrite functions with R for data science, data mining, and analytics-based applicationsVisualize data with ggplot2 and fit data to models using modelr
Who This Book Is For


Programmers new to R's data science, data mining, and analytics packages.  Some prior coding experience with R in general is recommended.  
Pages
232 pages
Collection
n.c
Parution
2022-10-28
Marque
Apress
EAN papier
9781484287798
EAN PDF
9781484287804

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
23
Taille du fichier
3645 Ko
Prix
36,47 €
EAN EPUB
9781484287804

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
23
Taille du fichier
799 Ko
Prix
36,47 €

Thomas Mailund is an associate professor at Aarhus University, Denmark. He has a background in math and computer science.  For the last decade, his main focus has been on genetics and evolutionary studies, particularly comparative genomics, speciation, and gene flow between emerging species.  He has published Beginning Data Science in R, Functional Programming in R, and Metaprogramming in R with Apress as well as other books on R and C programming.

Suggestions personnalisées