Online Capacity Provisioning for Energy-Efficient Datacenters



de

,

Éditeur :

Springer


Collection :

Synthesis Lectures on Learning, Networks, and Algorithms

Paru le : 2022-10-19



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book addresses the urgent issue of massive and inefficient energy consumption by data centers, which have become the largest co-located computing systems in the world and process trillions of megabytes of data every second. Dynamic provisioning algorithms have the potential to be the most viable and convenient of approaches to reducing data center energy consumption by turning off unnecessary servers, but they incur additional costs from being unable to properly predict future workload demands that have only recently been mitigated by advances in machine-learned predictions.


This book explores whether it is possible to design effective online dynamic provisioning algorithms that require zero future workload information while still achieving close-to-optimal performance. It also examines whether characterizing the benefits of utilizing the future workload information can then improve the design of online algorithms with predictions in dynamic provisioning. The book specifically develops online dynamic provisioning algorithms with and without the available future workload information. Readers will discover the elegant structure of the online dynamic provisioning problem in a way that reveals the optimal solution through divide-and-conquer tactics. The book teaches readers to exploit this insight by showing the design of two online competitive algorithms with competitive ratios characterized by the normalized size of a look-ahead window in which exact workload prediction is available.
Pages
79 pages
Collection
Synthesis Lectures on Learning, Networks, and Algorithms
Parution
2022-10-19
Marque
Springer
EAN papier
9783031115486
EAN PDF
9783031115493

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
1372 Ko
Prix
52,74 €
EAN EPUB
9783031115493

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
5939 Ko
Prix
52,74 €