Big, Open and Linked Data

Effects and Value for the Economy

de

Éditeur :

Springer


Paru le : 2022-09-24



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book examines the recent evolution of the concept of data as an economic and managerial phenomenon. The author first describes and discusses open data and then introduces the concept of linked data, with a focus on assets for reuse. Furthermore, he addresses the main challenges of big data. Value is identified as the main incentive for the adoption of linked data; accordingly, the next two chapters study sources of data value from a macroeconomic and micro economic perspective, respectively. This contributes to the systematization of important issues at the crossroads of enterprise data and data sharing: data ownership, personal data, and data privacy. In turn, the book reveals the role of innovation as a main vehicle for creating value by unifying big, open, and linked data. It studies the ways in which value can be created, transferred, and captured in the form of business models, before the closing chapter verifies the data unification model by combining open and linked geographical data with big data from a major telecom company.
Pages
256 pages
Collection
n.c
Parution
2022-09-24
Marque
Springer
EAN papier
9783031071461
EAN PDF
9783031071478

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
25
Taille du fichier
8694 Ko
Prix
94,94 €
EAN EPUB
9783031071478

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
25
Taille du fichier
31273 Ko
Prix
94,94 €

Krzysztof Wecel is an Associate Professor at the Poznan University of Economics and Business (Poland). In May 2020, he obtained a habilitation degree from the University of Potsdam (Germany) at the Faculty of Economics and Social Sciences. His main research interest is the intersection of semantic web technologies, open data, and machine learning. He has also a significant experience in big data and business intelligence technologies, ranging from data management through data warehousing to data mining and anomaly detection.

Suggestions personnalisées