Productive and Efficient Data Science with Python

With Modularizing, Memory profiles, and Parallel/GPU Processing

de

Éditeur :

Apress


Paru le : 2022-07-01



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
62,11

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book focuses on the Python-based tools and techniques to help you become highly productive at all aspects of typical data science stacks such as statistical analysis, visualization, model selection, and feature engineering.
You’ll review the inefficiencies and bottlenecks lurking in the daily business process and solve them with practical solutions. Automation of repetitive data science tasks is a key mindset that is promoted throughout the book. You’ll learn how to extend the existing coding practice to handle larger datasets with high efficiency with the help of advanced libraries and packages that already exist in the Python ecosystem. 
The book focuses on topics such as how to measure the memory footprint and execution speed of machine learning models, quality test a data science pipelines, and modularizing a data science pipeline for app development. You’ll review Python libraries which come in very handy for automating and speeding up the day-to-day tasks.   In the end, you’ll understand and perform data science and machine learning tasks beyond the traditional methods and utilize the full spectrum of the Python data science ecosystem to increase productivity.  

What You’ll Learn Write fast and efficient code for data science and machine learningBuild robust and expressive data science pipelines Measure memory and CPU profile for machine learning methods Utilize the full potential of GPU for data science tasks Handle large and complex data sets efficiently
Who This Book Is For 
Data scientists, data analysts, machine learning engineers, Artificial intelligence practitioners, statisticians who want to take full advantage of Python ecosystem.





Pages
383 pages
Collection
n.c
Parution
2022-07-01
Marque
Apress
EAN papier
9781484281208
EAN PDF
9781484281215

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
38
Taille du fichier
19497 Ko
Prix
62,11 €
EAN EPUB
9781484281215

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
38
Taille du fichier
25620 Ko
Prix
62,11 €

Suggestions personnalisées