Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context



de

Éditeur :

Springer Vieweg


Paru le : 2022-05-31



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
89,66

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book explores the combination of Reinforcement Learning and Quantum Computing in the light of complex attacker-defender scenarios. Reinforcement Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous computational power to obtain the optimal solution. 
The upcoming field of Quantum Computing is a promising path for solving computationally complex problems. Therefore, this work explores a hybrid quantum approach to policy gradient methods in Reinforcement Learning. It proposes a novel quantum REINFORCE algorithm that enhances its classical counterpart by Quantum Variational Circuits. The new algorithm is compared to classical algorithms regarding the convergence speed and memory usage on several attacker-defender scenarios with increasing complexity. In addition, to study its applicability on today's NISQ hardware, the algorithm is evaluated on IBM's quantum computers, which is accompanied by an in-depth analysis of the advantages of Quantum Reinforcement Learning.

Pages
134 pages
Collection
n.c
Parution
2022-05-31
Marque
Springer Vieweg
EAN papier
9783658376154
EAN PDF
9783658376161

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
3236 Ko
Prix
89,66 €
EAN EPUB
9783658376161

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
12524 Ko
Prix
89,66 €

About the author
Leonhard Kunczik obtained his Dr. rer. nat. in 2021 in Quantum Reinforcement Learning from the Universität der Bundeswehr München as a member of the COMTESSA research group. Now, he continues his research as a project leader at the forefront of Quantum Machine Learning and Optimization in the context of Operations Research and Cyber Security.

Suggestions personnalisées