Numerical Methods Using Java

For Data Science, Analysis, and Engineering

de

Éditeur :

Apress


Paru le : 2022-01-01



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
56,19

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Implement numerical algorithms in Java using NM Dev, an object-oriented and high-performance programming library for mathematics.You’ll see how it can help you easily create a solution for your complex engineering problem by quickly putting together classes.
Numerical Methods Using Java covers a wide range of topics, including chapters on linear algebra, root finding, curve fitting, differentiation and integration, solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustrations to help even beginners get started. 
What You Will Learn


Program in Java using a high-performance numerical library
Learn the mathematics for a wide range of numerical computing algorithms
Convert ideas and equations into code
Put together algorithms and classes to build your own engineering solution
Build solvers for industrial optimization problems
Do data analysis using basic and advanced statistics
Who This Book Is For 

Programmers, data scientists, and analysts with prior experience with programming in any language, especially Java. 
Pages
1186 pages
Collection
n.c
Parution
2022-01-01
Marque
Apress
EAN papier
9781484267967
EAN PDF
9781484267974

Informations sur l'ebook
Nombre pages copiables
11
Nombre pages imprimables
118
Taille du fichier
29020 Ko
Prix
56,19 €
EAN EPUB
9781484267974

Informations sur l'ebook
Nombre pages copiables
11
Nombre pages imprimables
118
Taille du fichier
63867 Ko
Prix
56,19 €

Suggestions personnalisées