Handbook of Reinforcement Learning and Control

de

, , ,

Éditeur :

Springer


Collection :

Studies in Systems, Decision and Control

Paru le : 2021-06-23

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
231,04

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology.
The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including:
deep learning;artificial intelligence;applications of game theory;mixed modality learning; andmulti-agent reinforcement learning.
Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative. 
Pages
833 pages
Collection
Studies in Systems, Decision and Control
Parution
2021-06-23
Marque
Springer
EAN papier
9783030609894
EAN PDF
9783030609900

Informations sur l'ebook
Nombre pages copiables
8
Nombre pages imprimables
83
Taille du fichier
20890 Ko
Prix
231,04 €
EAN EPUB
9783030609900

Informations sur l'ebook
Nombre pages copiables
8
Nombre pages imprimables
83
Taille du fichier
95969 Ko
Prix
231,04 €