Population Development Challenges in China

Family Planning Policy and Provincial Population Difference

de

Éditeur :

Springer


Paru le : 2020-09-12



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book explores the population development challenges in China. It started by analyzing two of the major challenges: designing a suitable family planning policy and dealing with the serious provincial population difference. It then proposes effective measures to address these challenges by adopting various quantitative methods, such as system dynamics, nonlinear programming and spatial econometrics in evaluating the effects of different policy scenarios, which made the results more scientific and reliable, thus the final policy suggestions effective and evidence based. The book includes a number of mathematical models and is suitable for graduate students and researchers in population modeling and relevant research areas.



Pages
241 pages
Collection
n.c
Parution
2020-09-12
Marque
Springer
EAN papier
9789811580093
EAN PDF
9789811580109

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
24
Taille du fichier
9370 Ko
Prix
94,94 €
EAN EPUB
9789811580109

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
24
Taille du fichier
10168 Ko
Prix
94,94 €

Pengkun Wu received two Ph.D. degrees from The Hong Kong Polytechnic University and Harbin Institute of Technology. He is currently an Associate Professor at Sichuan University. His research interests are China’s population development, decision support systems and e-commerce. He has published over 10 papers in some international journals, such as Decision Support Systems, Applied Mathematical Modelling, Social Indicators Research, Quality & Quantity and Journal of the Operational Research Society.


Suggestions personnalisées