Hands-on Time Series Analysis with Python

From Basics to Bleeding Edge Techniques

de

,

Éditeur :

Apress


Paru le : 2020-08-24



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
56,19

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Learn the concepts of time series from traditional to bleeding-edge techniques.  This book uses comprehensive examples to clearly illustrate statistical approaches and methods of analyzing time series data and its utilization in the real world. All the code is available in Jupyter notebooks.


You'll begin by reviewing time series fundamentals, the structure of time series data, pre-processing, and how to craft the features through data wrangling. Next, you'll look at traditional time series techniques like ARMA, SARIMAX, VAR, and VARMA using trending framework like StatsModels and pmdarima. 



The book also explains building classification models using sktime, and covers advanced deep learning-based techniques like ANN, CNN, RNN, LSTM, GRU and Autoencoder to solve time series problem using Tensorflow. It concludes by explaining the popular framework fbprophet for modeling time series analysis. After reading Hands-On Time Series Analysis with Python, you'll be able to apply these new techniques in industries, such as oil and gas, robotics, manufacturing, government, banking, retail, healthcare, and more. 


What You'll Learn:

·  Explains basics to advanced concepts of time series
·  How to design, develop, train, and validate time-series methodologies
·  What are smoothing, ARMA, ARIMA, SARIMA,SRIMAX, VAR, VARMA techniques in time series and how to optimally tune parameters to yield best results
·  Learn how to leverage bleeding-edge techniques such as ANN, CNN, RNN, LSTM, GRU, Autoencoder  to solve both Univariate and multivariate problems by using two types of data preparation methods for time series.
·  Univariate and multivariate problem solving using fbprophet.


Who This Book Is For


Data scientists, data analysts, financial analysts, and stock market researchers





Pages
407 pages
Collection
n.c
Parution
2020-08-24
Marque
Apress
EAN papier
9781484259917
EAN PDF
9781484259924

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
40
Taille du fichier
17531 Ko
Prix
56,19 €
EAN EPUB
9781484259924

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
40
Taille du fichier
23941 Ko
Prix
56,19 €

Suggestions personnalisées