Intrusion Detection

A Data Mining Approach de

,

Éditeur :

Springer


Collection :

Cognitive Intelligence and Robotics

Paru le : 2020-01-24

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
147,69

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


This book presents state-of-the-art research on intrusion detection using reinforcement learning, fuzzy and rough set theories, and genetic algorithm. Reinforcement learning is employed to incrementally learn the computer network behavior, while rough and fuzzy sets are utilized to handle the uncertainty involved in the detection of traffic anomaly to secure data resources from possible attack. Genetic algorithms make it possible to optimally select the network traffic parameters to reduce the risk of network intrusion.
The book is unique in terms of its content, organization, and writing style. Primarily intended for graduate electrical and computer engineering students, it is also useful for doctoral students pursuing research in intrusion detection and practitioners interested in network security and administration. The book covers a wide range of applications, from general computer security to server, network, and cloud security.


Pages
136 pages
Collection
Cognitive Intelligence and Robotics
Parution
2020-01-24
Marque
Springer
EAN papier
9789811527159
EAN PDF
9789811527166

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
5192 Ko
Prix
147,69 €
EAN EPUB
9789811527166

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
10496 Ko
Prix
147,69 €