Deep Learning Pipeline

Building a Deep Learning Model with TensorFlow

de

,

Éditeur :

Apress


Paru le : 2019-12-20



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
46,34

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects. 
You'll learn what a pipeline is and how it works so you can build a full application easily and rapidly. Then troubleshoot and overcome basic Tensorflow obstacles to easily create functional apps and deploy well-trained models. Step-by-step and example-oriented instructions help you understand each step of the deep learning pipeline while you apply the most straightforward and effective tools to demonstrative problems and datasets.  You'll also develop a deep learning project by preparing data, choosing the model that fits that data, and debugging your model to get the best fit to data all using Tensorflow techniques. Enhance your skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution or entering a Kaggle contest, Deep Learning Pipeline is for you!


What You'll Learn
Develop a deep learning project using dataStudy and apply various models to your dataDebug and troubleshoot the proper model suited for your data


Who This Book Is For



Developers, analysts, and data scientists looking to add to or enhance their existing skills by accessing some of the most powerful recent trends in data science. Prior experience in Python or other TensorFlow related languages and mathematics would be helpful.
Pages
551 pages
Collection
n.c
Parution
2019-12-20
Marque
Apress
EAN papier
9781484253489
EAN PDF
9781484253496

Informations sur l'ebook
Nombre pages copiables
5
Nombre pages imprimables
55
Taille du fichier
12493 Ko
Prix
46,34 €
EAN EPUB
9781484253496

Informations sur l'ebook
Nombre pages copiables
5
Nombre pages imprimables
55
Taille du fichier
12605 Ko
Prix
46,34 €

Suggestions personnalisées