Temporal Modelling of Customer Behaviour



de

Éditeur :

Springer


Collection :

Springer Theses

Paru le : 2019-04-27



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
147,69

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


This book describes advanced machine learning models – such as temporal collaborative filtering, stochastic models and Bayesian nonparametrics – for analysing customer behaviour. It shows how they are used to track changes in customer behaviour, monitor the evolution of customer groups, and detect various factors, such as seasonal effects and preference drifts, that may influence customers’ purchasing behaviour. In addition, the book presents four case studies conducted with data from a supermarket health program in which the customers were segmented and the impact of promotional activities on different segments was evaluated. The outcomes confirm that the models developed here can be used to effectively analyse dynamic behaviour and increase customer engagement. Importantly, the methods introduced here can also be used to analyse other types of behavioural data such as activities on social networks, and educational systems.

Pages
123 pages
Collection
Springer Theses
Parution
2019-04-27
Marque
Springer
EAN papier
9783030182885
EAN PDF
9783030182892

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
12
Taille du fichier
3676 Ko
Prix
147,69 €
EAN EPUB
9783030182892

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
12
Taille du fichier
7875 Ko
Prix
147,69 €