Machine Learning for Evolution Strategies

de

Éditeur :

Springer


Collection :

Studies in Big Data

Paru le : 2016-05-25

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.
Pages
124 pages
Collection
Studies in Big Data
Parution
2016-05-25
Marque
Springer
EAN papier
9783319333816
EAN EPUB
9783319333830

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
12
Taille du fichier
1587 Ko
Prix
94,94 €